872 research outputs found

    The Abundance Of Boron In Diffuse Interstellar Clouds

    Get PDF
    We present a comprehensive survey of boron abundances in diffuse interstellar clouds from observations made with the Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope. Our sample of 56 Galactic sight lines is the result of a complete search of archival STIS data for the B II lambda 1362 resonance line, with each detection confirmed by the presence of absorption from O I lambda 1355, Cu II lambda 1358, and Ga II lambda 1414 (when available) at the same velocity. Five previous measurements of interstellar B II from Goddard High Resolution Spectrograph observations are incorporated in our analysis, yielding a combined sample that more than quadruples the number of sight lines with significant boron detections. Our survey also constitutes the first extensive analysis of interstellar gallium from STIS spectra and expands on previously published results for oxygen and copper. The observations probe both high-and low-density diffuse environments, allowing the density-dependent effects of interstellar depletion to be clearly identified in the gas-phase abundance data for each element. In the case of boron, the increase in relative depletion with line-of-sight density amounts to an abundance difference of 0.8 dex between the warm and cold phases of the diffuse interstellar medium. The abundance of boron in warm, low-density gas is found to be B/H = (2.4 +/- 0.6) x 10(-10), which represents a depletion of 60% relative to the meteoritic boron abundance. Beyond the effects of depletion, our survey reveals sight lines with enhanced boron abundances that potentially trace the recent production of B-11, resulting from spallation reactions involving either cosmic rays or neutrinos. Future observations will help to disentangle the relative contributions from the two spallation channels for B-11 synthesis.Robert A. Welch Foundation F-634Space Telescope Science Institute HST-AR-11247.01-AAssociation of Universities for Research in Astronomy, Inc., under NASA NAS5-26555Astronom

    First Record of \u3ci\u3eOchlerotatus Japonicus\u3c/i\u3e (Diptera: Culicidae) in St. Joseph County, Indiana

    Get PDF
    A single female specimen of Ochlerotatus japonicus (Theobald)(formerly Aedes japonicus), the Asian bush mosquito, was captured in St. Joseph County, IN on 29 July 2004. This is the first report of that species in northern Indiana. Additional specimens were subsequently collected, indicating probable establishment throughout the county

    The Discovery of Vibrationally-Excited H_2 in the Molecular Cloud near GRB 080607

    Get PDF
    GRB 080607 has provided the first strong observational signatures of molecular absorption bands toward any galaxy hosting a gamma-ray burst. Despite the identification of dozens of features as belonging to various atomic and molecular (H_2 and CO) carriers, many more absorption features remained unidentified. Here we report on a search among these features for absorption from vibrationally-excited H_2, a species that was predicted to be produced by the UV flash of a GRB impinging on a molecular cloud. Following a detailed comparison between our spectroscopy and static, as well as dynamic, models of H_2* absorption, we conclude that a column density of 10^{17.5+-0.2} cm^{-2} of H_2* was produced along the line of sight toward GRB 080607. Depending on the assumed amount of dust extinction between the molecular cloud and the GRB, the model distance between the two is found to be in the range 230--940 pc. Such a range is consistent with a conservative lower limit of 100 pc estimated from the presence of Mg I in the same data. These distances show that substantial molecular material is found within hundreds of pc from GRB 080607, part of the distribution of clouds within the GRB host galaxy.Comment: Submitted to ApJL, 6 pages emulate

    FUSE Measurements of Interstellar Fluorine

    Full text link
    The source of fluorine is not well understood, although core-collapse supernovae, Wolf-Rayet stars, and asymptotic giant branch stars have been suggested. A search for evidence of the nu process during Type II supernovae is presented. Absorption from interstellar F I is seen in spectra of HD 208440 and HD 209339A acquired with the Far Ultraviolet Spectroscopic Explorer. In order to extract the column density for F I from the line at 954 A, absorption from H2 has to be modeled and then removed. Our analysis indicates that for H2 column densities less than about 3 x 10^20 cm^-2, the amount of F I can be determined from lambda 954. For these two sight lines, there is no clear indication for enhanced F abundances resulting from the nu process in a region shaped by past supernovae.Comment: 17 pages, 4 figures, accepted for publication in Ap

    Interstellar CN and CH+ in Diffuse Molecular Clouds: 12C/13C Ratios and CN Excitation

    Full text link
    We present very high signal-to-noise ratio absorption-line observations of CN and CH+ along 13 lines of sight through diffuse molecular clouds. The data are examined to extract precise isotopologic ratios of 12CN/13CN and 12CH+/13CH+ in order to assess predictions of diffuse cloud chemistry. Our results on 12CH+/13CH+ confirm that this ratio does not deviate from the ambient 12C/13C ratio in local interstellar clouds, as expected if the formation of CH+ involves nonthermal processes. We find that 12CN/13CN, however, can be significantly fractionated away from the ambient value. The dispersion in our sample of 12CN/13CN ratios is similar to that found in recent surveys of 12CO/13CO. For sight lines where both ratios have been determined, the 12CN/13CN ratios are generally fractionated in the opposite sense compared to 12CO/13CO. Chemical fractionation in CO results from competition between selective photodissociation and isotopic charge exchange. An inverse relationship between 12CN/13CN and 12CO/13CO follows from the coexistence of CN and CO in diffuse cloud cores. However, an isotopic charge exchange reaction with CN may mitigate the enhancements in 12CN/13CN for lines of sight with low 12CO/13CO ratios. For two sight lines with high values of 12CO/13CO, our results indicate that about 50 percent of the carbon is locked up in CO, which is consistent with the notion that these sight lines probe molecular cloud envelopes where the transition from C+ to CO is expected to occur. An analysis of CN rotational excitation yields a weighted mean value for T_01(12CN) of 2.754 +/- 0.002 K, which implies an excess over the temperature of the cosmic microwave background of only 29 +/- 3 mK. This modest excess eliminates the need for a local excitation mechanism beyond electron and neutral collisions. The rotational excitation temperatures in 13CN show no excess over the temperature of the CMB.Comment: 27 pages, 21 figures, emulateapj style, accepted for publication in Ap

    Mutual Event Observations of Io's Sodium Corona

    Get PDF
    We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere

    Loopy Cuts: Surface-Field Aware Block Decomposition for Hex-Meshing.

    Full text link
    We present a new fully automatic block-decomposition hexahedral meshing algorithm capable of producing high quality meshes that strictly preserve feature curve networks on the input surface and align with an input surface cross-field. We produce all-hex meshes on the vast majority of inputs, and introduce localized non-hex elements only when the surface feature network necessitates those. The input to our framework is a closed surface with a collection of geometric or user-demarcated feature curves and a feature-aligned surface cross-field. Its output is a compact set of blocks whose edges interpolate these features and are loosely aligned with this cross-field. We obtain this block decomposition by cutting the input model using a collection of simple cutting surfaces bounded by closed surface loops. The set of cutting loops spans the input feature curves, ensuring feature preservation, and is obtained using a field-space sampling process. The computed loops are uniformly distributed across the surface, cross orthogonally, and are loosely aligned with the cross-field directions, inducing the desired block decomposition. We validate our method by applying it to a large range of complex inputs and comparing our results to those produced by state-of-the-art alternatives. Contrary to prior approaches, our framework consistently produces high-quality field aligned meshes while strictly preserving geometric or user-specified surface features

    Diffuse Atomic and Molecular Gas near IC443

    Full text link
    We present an analysis of results on absorption from Ca II, Ca I, K I, and the molecules CH+, CH, C2, and CN that probes gas interacting with the supernova remnant IC443. The eleven directions sample material across the visible nebula and beyond its eastern edge. Most of the neutral material, including the diatomic molecules, is associated with the ambient cloud detected via H I and CO emission. Analysis of excitation and chemistry yields gas densities that are typical of diffuse molecular gas. The low density gas probed by Ca II extends over a large range in velocities, from -120 to +80 km/s in the most extreme cases. This gas is distributed among several velocity components, unlike the situation for the shocked molecular clumps, whose emission occurs over much the same range but as very broad features. The extent of the high-velocity absorption suggests a shock velocity of 100 km/s for the expanding nebula.Comment: To be published in Ap

    Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

    Get PDF
    We investigate the possibility of using arrays of closely spaced metal nanoparticles as plasmon waveguides for electromagnetic energy below the diffraction limit of light. Far-field spectroscopy on arrays of closely spaced 50 nm Au particles fabricated using electron beam lithography reveals the presence of near-field optical particle interactions that lead to shifts in the plasmon resonance frequencies for longitudinal and transverse excitations. We link this observation to a point-dipole model for energy transfer in plasmon waveguides and give an estimate of the expected group velocities and energy decay lengths for the fabricated structures. A near-field optical excitation and detection scheme for energy transport is proposed and demonstrated. The fabricated structures show a high propagation loss of about 3 dB / 15 nm which renders a direct experimental observation of energy transfer impossible. The nature of the loss and ways to decrease it by an order of magnitude are discussed. We also present finite-difference time-domain simulations on the energy transfer properties of plasmon waveguides

    Meniscus confined fabrication of multidimensional conducting polymer nanostructures with scanning electrochemical cell microscopy (SECCM)

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is demonstrated as a new approach for the construction of extended multi-dimensional conducting polymer (polyaniline) nanostructures, making use of a mobile dual-channel theta pipette cell to control and monitor the location, rate and extent of electropolymerisation
    corecore